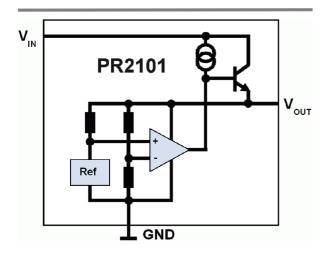


80 V Linear Regulator PR2101

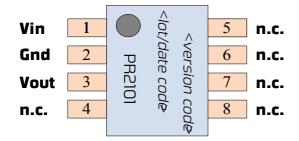
The PR2101 is a high voltage, low quiescent current, linear regulator. It has a wide operating input voltage range of 7 V to 80 V for an output voltage of 5 V.


APPICATIONS

- · Low current, high voltage regulators
- Battery powered systems
- Automotive applications
- Telecom applications

FEATURES

- 7 V to 80 V input voltage range
- Voltage stability 30 ppm over an input voltage range of 10...80 $\rm V$
- Temperature stability +/- 0.5 % over a temperature range between -40°C and +120°C
- Low quiescent current of typ. 50 μA
- Output current up to 6 mA
- Stable operation also without capacitors


BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Min	Max	Units
dV_{IN} (transients, no damage)	-0,3	90	[V]
Operating Temperature Range	-20	85	[°C]
Storage Temperature Range	-55	150	[°C]
Electrostatic Discharge (ESD) Protection	1		[kV]

PIN DESCRIPTIONS

Pin No	Pin Name	Pin Function Description		
1	Vin	Input voltage		
2	Gnd	Ground connection		
3	Vout	Output voltage		
4 - 8	n.c.	not connected		

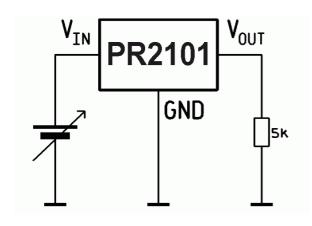
Properties

ELECTRICAL CHARACTERISTICS

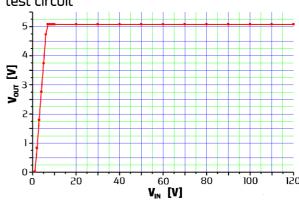
 $V_{CC} - V_{EE} = 80 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

Electrical Characteristics

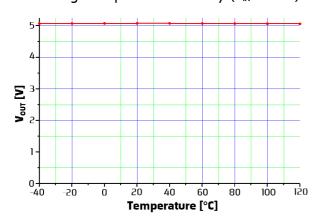
Parameter		Conditions	Min	Тур	Max	Units
Input Voltage	V _{IN}		7		80	[V]
Output Voltage	V _{OUT}	T _A = 25°C	4.8	5.0	5.2	[V]
Output Current	l _{out}	$V_{IN} \geq 7 V$			6	[mA]
Regulator voltage drop	V _{IN} - V _{OUT}		2		80	[V]
Line Regulation	ΔV_{OUT}	$10 \text{ V} < V_{IN} < 80 \text{ V, } I_{OUT} = 1 \text{ mA}$		±0.003		[%]
Load Regulation	ΔV _{OUT}	$V_{IN} = 80 \text{ V},$ 1 mA < I_{OUT} < 6 mA		±0.2		[%]
Temperature Stabilty	ΔV _{OUT}	$V_{IN} = 80 \text{ V, } I_{OUT} = 1 \text{ mA,}$ -40°C < $T_A < 120$ °C		±0.5		[%]
Quiescent Current	I _{IDLE}	$V_{IN} = 80 \text{ V, } I_{OUT} = 0 \text{ mA}$ $T_A = 25^{\circ}\text{C}$	40	50	60	[hV]
Junction Temperature	TJ				125	[°C]
Thermal Resistance	Θ_{JA}	SO-8 package, no air convection		160	_	[°C/W]

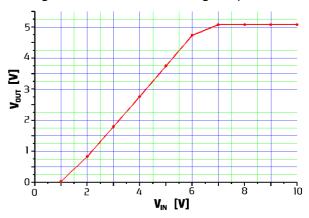


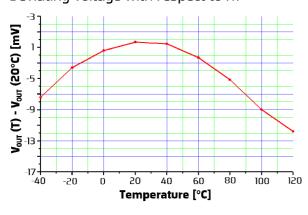
Typical Performance Characteristics

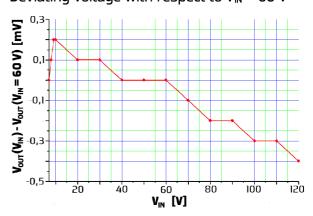

LEAST TEMPTERATURE DEPENDANCE OF THE OUTPUT VOLATAGE

INDEPENDANCE OF THE OUTPUT VOLTAGE ON THE INPUT VOLTAGE

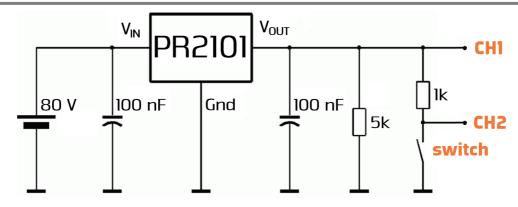

Test circuit

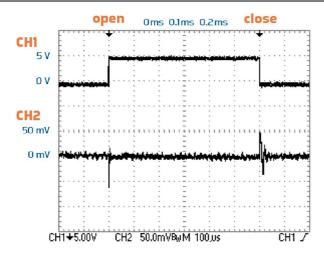

Measurements performed with an identical test circuit


Wide range temperature stability ($V_{IN} = 80 \text{ V}$)

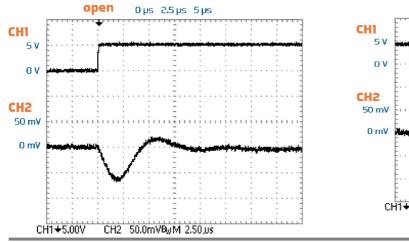

Enlarged initiation of the voltage dependance

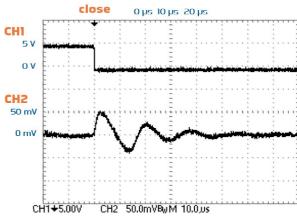
Deviating voltage with respect to RT


Deviating voltage with respect to $V_{IN} = 60 \text{ V}$



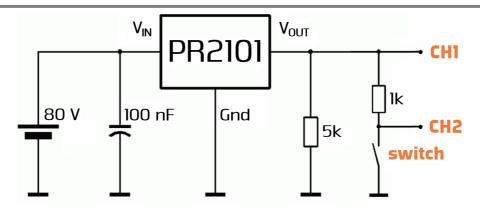
Behaviour of PR2101 caused by Load changes

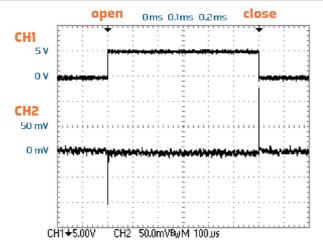

LOAD TRANSIENT RESPONSE USING A 100 nF OUPUT CAPACITOR



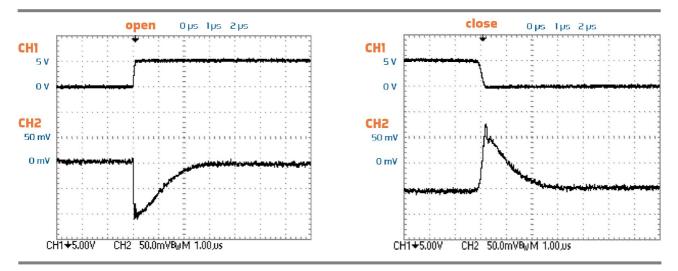
VOLTAGE AT CHI AND CH2 WHILE OPENING AND CLOSING THE SWITCH

ENLARGED SECTIONS FOR RESOLVING THE SIGNALS ABOVE

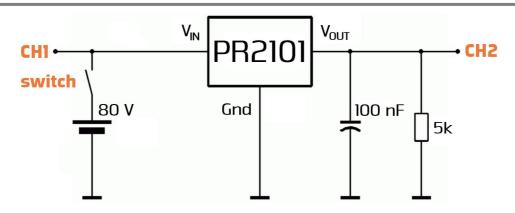


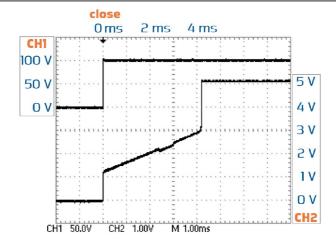


Behaviour of PR2101 caused by Load changes


LOAD TRANSIENT RESPONSE WITHOUT AN OUTPUT CAPACITOR

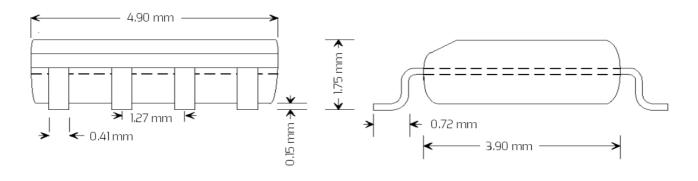
VOLTAGE AT CHI AND CH2 WHILE OPENING AND CLOSING THE SWITCH

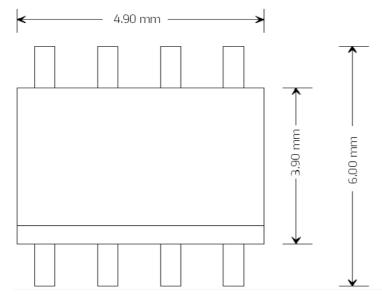

ENLARGED SECTIONS FOR RESOLVING THE SIGNALS ABOVE (FASTER RESPONSE; HIGHER PEAK VOLTAGE)



Starting Behaviour of PR2101

CIRCUIT DIAGRAM


VOLTAGE EVOLUTION WHILE CLOSING THE SWITCH



Available Package

TECHNICAL DRAWING

Package type: 8L SOIC (150 mils)

PR2101 SOIC package in plastic tube or tape and reel

Packing unit: 100 ICs per tube or 3500 ICs per reel

ALL PARTS DELIVERED, COMPLY WITH ROHS. FINISH IS PURE TIN.

Disclaimer

Information provided by PREMA is believed to be accurate and correct. However, no responsibility is assumed by PREMA for its use, nor for any infringements of patents or other rights of third parties which may result from its use. PREMA reserves the right at any time without notice to change circuitry and specifications.

Life Support Policy

PREMA Semiconductors products are not authorized for use as critical components in life support devices or systems without the express written approval of PREMA Semiconductor. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PREMA Semiconductor GmbH

Robert-Bosch-Str. 6 55129 Mainz Germany Phone: +49-6131-5062-0 Fax: +49-6131-5062-220

Email: <u>prema@prema.com</u> Web site: www.prema.com